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1. INTRODUCTION

Recently the second and third authors have considered the question of
approximating a real-valued continuous function f on [ -1, 1] by recipro­
cals of polynomials having real or complex coefficients. While no restric­
tions on f are necessary for the approximation by reciprocals of complex
polynomials, it is obvious that if we limit ourselves to reciprocals of real
polynomials we must assume that f does not change sign in the interval.
Under this assumption it was shown in [3] that one can approximate
f( :;EO) by reciprocals of real polynomials at the rate w( f, lin), where
w(f, .) is the usual modulus of continuity of f The purpose of this note is
to improve the above estimates by replacing w(f, lin) by the Ditzian-Totik
modulus of continuity w<p(f, lin) and also to obtain estimates on the rate
of approximation by reciprocals of polynomials in the U-norm, I ~ p < 00.
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Here, unfortunately, we have to assume f E LP + 1[ -1, 1] and give the
estimates in terms of wq>(f, 1/n)p+l' The last section is devoted to some
estimates on shape-preserving approximation by reciprocals of polynomials
in the various norms.

2. ApPROXIMATION IN C[ -1, 1]

Let <p(x):=~ and set

L1 hq>f(x) :

= {f(X + (h/2) <p(x)) - f(x - (h/2) c,o(x)),
0,

Following Ditzian and Totik [2], define

x±(h/2) c,o(X)E [-1, 1]
otherwise.

Wq>(f,t):= sup IIL1 hq>flloo,
O<h~1

where 11·1100 denotes the sup norm over [- 1, 1]. Then it is readily seen
that, for any f E C[ -1, 1],

W<p(f, t)~w(f, t)

while, for instance, for f(x) =~ we have

Wq>(f, t) = O(t) and

Ditzian and Totik [2] proved that wq>(f, t) is equivalent to the modified
Peetre kernel

Kq>(f, t): = inf{ Ilf - gil 00 + t II c,og' II 00 + t2 Ilg'll oo}.

where the infimum is taken over all g that are absolutely continuous in
[ -1, 1] and such that g' E L 00 [ -1, 1]. Our first main result is

THEOREM 1. Let f E C[ -1, 1] be nonconstant and nonnegative. Then
there exists a sequence of polynomials {Pit} 'f, with Pit E &/1, such that

n= 1, 2, .... (1)

Here and throughout this paper, C is an absolute constant independent
of f and n whose value may be different from line to line and [!!" denotes
the collection of all real polynomials of degree at most n.
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Remark. Obviously, a nonzero constant function f is approximable at
the rate (1), while f == 0 is not.

In the proof of Theorem 1 we shall need the following.

LEMMA 2. Let fE C[ -1,1] and define gE C[ -n, n] by
g(O):= f(cos 0). Let Kn(t) be the Jackson kernel that satisfies

Then, for - n ::::; () ::::; n,

k = 1, 2, 3,4. (2)

k= 1, 2.

Proof By virtue of the equivalence between w",(f, t) and K",(f, t), given
f E C[ -1, 1], for each n = 1, 2, ..., there exists an fn absolutely continuous
on [-1,1] such that

(3)

Setting gn«()) := fn(cos ()), then by (2) and (3) we have for k = 1, 2,

[" Ig«() + t) - g«()W Kn(t) dt

::::; C [w", (f, Dr+[" Ign«()+ t)-gn(OW Kn(t) dt. (4)

Now, for each u between cos () and cos«() + t) we have

1 = __2 _sin_(:..-()_+-,t/-,--2.:-)s_in-,(-,-:t/2--,-)
cos(0 + t) - cos 0

2cp(u) sin(t/2) 2[cp(u) - sin(O + t/2)] sin(t/2)
=- + .

cos(0 + t) - cos 0 cos(0 + t) - cos 0
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f1t IfCOS(O+ll Ik
= -1t coso f~(u)du Kn(t)dt

f1t I 1 fCOS(O+'l Ik
~ C ((}) () If~(u)1 cp(u) du Itl k Kn(t) dt

- 1t cos + t - cos cos 0

f1t I 1 fCOS(O+ll Ik+ C ((}) () If~(u)1 du Itl
2k

Kn(t) dt
- 1t cos + t - cos cos 0

Thus, from (2) and (3), we conclude that for k = 1, 2,

Combining this last inequality with (4) proves Lemma 2. I
We now turn to the proof of Theorem 1. Although we basically follow

the ideas of the proof in [3] (except that Lemma 2 provides sharper
estimates), there is one major difference. In preparation for the U case we
do not wish to use the pointwise value of f in order to get a lower estimate
on the product fPn and thereby prove that Pn does not vanish in [ -I,ll
In fact, in the LP case, it makes no sense to look for such a lower estimate.
Nevertheless we prove that Pn does not vanish in [ -I,ll

Proof of Theorem 1. Given a nonconstant f E C[ -1, 1], f~ 0, and
e>O, let f.(x):=f(x)+e and let g,((}):=f,(cos(}), (}E[-n,nl Then
Il/g.1 ~ l/e and we can define the algebraic polynomials

n= 1, 2, ... , (6)

where x = cos () and Kn(t) is the Jackson kernel of Lemma 2.
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By Holder's inequality,

1=(J:
n

Kn(t)dtY

~ J:
n

gJ8 + t) Kn(t) dt· J:
n

g.(8
1
+ t) Kn(t) dt

= Pn(X)'r g.(8 + t) Kn(t) dt.
-n

Thus Pn does not vanish in [ -1, 1] and

1 In-(-) ~ ge(8 + t) Kn(t) dt.
Pn X -n

(7)

Let E:= {X: (1IPn(x)) > Ie(x)}, Then, by (7) and Lemma 2, we have for
XEE

0< _1__ Ie(x) ~ In [ge(8 + t) - gJ8)] Kn(t) dt
Pn(X) -n

~ Cw~ (Ie> D= Cw~ (J,~). (8)

For x in the complement of E we have

1
-(-) ~Ie(x),
Pn x

Hence

where for the last inequality we used the fact that I/ge ~ lie. By virtue of
Lemma 2, we have for x rt: E

O~Ie(x) - Pn~X) ~ Cw~ (f,D+ c ~ [w~ (f,DT
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(since w<p(f" t) =- w<p(f, t)). Choosing e = w<p(f, lin), which is not zero since
I i= const, yields

for x¢ E.

Combining with (8) we have

Thus

~ e+ CW<p (f,~)

~ CW<p (f,~}

This completes the proof. I
Remark. If we work with CEO, 1] instead of C[ -1, 1], then cp takes

the form cp(x)=Jx(l-x) and for x~, 0<0:<1, we have w<p(x~,t)=
O( t2~). Hence the error in approximating x~, 0< 0: < 1, on [0, 1] by
reciprocals of polynomials can be estimated by Cn -2~, where C is an
absolute constant. This fact was also proved in [3] where a special con­
struction is used. Note, however, that our present proof is valid only for
0< 0: < 1, while in [3] a similar estimate is established for all 0: > °with
C = C(o:) increasing to infinity as 0: ---t 00.

3. ApPROXIMATION IN U[ -1, 1]

Here again we follow Ditzian and Totik [2] as we denote

W<p(f, t)p:= sup IIAh<p/llp.
O~h~l

It was shown in [2] that w<p(f, t)p is equivalent to the Peetre kernel

K<p(f, t)p := inf{ III - gllp + ( IIcpg'll p + (2 Ilg/ll p },

where the infimum is taken over all g E LP[ -1, 1] that are absolutely con­
tinuous in [ -1, 1] and such that g' E U[ -1, 1].
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Our result in this case is not as satisfactory as in C[ -1, 1]. We will
prove

THEOREM 3. Let fELP+l[ -1,1], 1~P< 00, be nonconstant and non­
negative. Then there exists a sequence of polynomials {pnH'" with PnE fY>,.,
such that

II
f - ~ II ~ Cw <p (f, !) ,

Pn p n p+l
n= 1, 2, .... (9)

Remark. Obviously U+ I [ -1, 1] is a proper subset of U[ -1, 1] and
we have the inequality

w<p(f, t)p~w<p(f, t)P+ll

but we are not able to replace the right-hand side of (9) by CW<p(f, I/n)p'
We do not know if this gap is indeed necessary or is due to the limitations
of our method of proof.

Proof of Theorem 3. It follows from the equivalence of w<p(f, . )p+ I and
K<p(f, ')p + I that, for each n, there exists an absolutely continuous function
fnEU+1[ -1,1] such that

Ilf - fnllp ~ C Ilf - fnllp+ I ~ CW<p (f,!) ,
n p+l

II<pf~llp+ 1 ~ Cnw<p (f,!) ,
n p+l

Ilf~llp+ 1 ~ Cn
2

w<p (f,!) .
n p+l

(10)

Moreover, a close look at the proof of Ditzian and Totik [2, Sect. 3.1]
reveals that fn is nonnegative if f ~ O. Thus it suffices to approximate fn at
the proper rate and this together with (10) will yield (9).

We proceed as in the proof of Theorem 1. Let Fn(x) := fn(x) + e and let
g,(O):= g,.n(O):= Fn(cosO), -n~O~n. Let Kn(t) be a suitable Jackson
kernel, i.e., such that

k=I,2, ..., [2p+3]. (11)

Then again g,-l ~ lie and we can define the polynomial Pn by (6). We still
have the estimate (7), although the right-hand side of (7) may be infinite
for fEU + I [ -1, 1]. That this is not so for a differentiable f follows from
(14) and (15) later in our proof.
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E 1 := {x: Pn~X) > Fn(X)}.

Then, by (7) and Minkowski's inequality,

[LI IPn~X) -Fn(Xf dxJIP

~[L If" [gf.(lJ+t)-gf.(8)] Kn(t)df dxJIP

~ f" Kn(t) [LI IgA8 + t) - gf.(8W dxJIP dt. (12)

Next, for any x E [ - 1, 1],

1

_ 1__ F (X)! = 11- Pn(x) Fn(x)1
Pn(x) n Pn(x)

~-I-f" IgA8+t)-g,(8)1 Kn(t)dt.
Pn(x) -it gf.(8 + t)

and so using the integral representation (6) and Holder's inequality we get

Now for x E E2 : = [ -1, 1] \E1 , we have

1
-(-) ~ Fn(x),
Pn x

and so it follows that for x E E 2

!

_I_- Fn(X)IP ~f" Igf.(8+t)-gf.(8W g,(8) Kn(t) dt.
Pn(x) ~"gf.(8+ t)

Hence

~ t2 [it Igf.(8 + t) - gA8W Kn(t) dt dx

+ ~ f r Igf.(8 + t) - g,(8)IP+ 1 Kn(t) dt dx,
e £2 ~"

where we used the inequality g;- 1 ~ l/e.

640/57/3-7

(13 )
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(14)

It remains to estimate the integrals on the right-hand sides of (12) and
(13). They are similar and we use the method of proof of Lemma 2 in order
to estimate each of them. What we get is

J[ [ JIIP ( 1)I Kn(t) I IgAO+t)-g,(OWdx dt~Cwcp f,- ,
-J[ £1 n p+ I

r Kn(t)L IgAO+t)-gAOWdXdt~C[Wcp(f,!) Jq,(15)
-n £2 n p+ I

for q = p or q = p + 1.
We shall only prove (15) (( 14) being similar). Consider

r Kn(t) I Ige(O+t)-ge(OWdxdt
-J[ £2

In I IICOS(O+11 Iq
= -J[ Kn(t) £2 cosO F~(u) du dx dt

IJ[ I 1 fCOS(O+11 Iq
~C (ll) II IF~(u)lljJ(u)du ItlqKn(t)dxdt

- n cos U + t - cos u cos 0

J[ I 1 fCOS(o+tl Iq
+Cf (0) 0 IF~(u)ldu ItI

2q
Kn(t)dxdt

-n cos + t - cos cos 0

as in the proof of Lemma 2. Denote by M ~x) the Hardy maximal function
of F, i.e.,

M~x):= sup _111 II F(s) dsl·
XE I I I

Then it follows that for x = cos 0

[n Kn(t) t2 Ige(0+t)-ge(OWdxdt

~ C [J[ IW Kn(t) t
z
IMIF~lcp(XW dx dt

+c [n ItI
2q

Kn(t) t2IMIF~I(XWdxdt

~ Cn-
q

IIMIF~lcpll~ + Cn-
2q

IIMlf)l~

~Cn-q IIMIF~lcpll~+1 +Cn~~2q IIMIF~III~+l

~Cn-q 11F~1jJ11~+1 +Cn-
2q

IIF~II~+l'
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by virtue of the inequality (see [4, p.58])

331

l<p~<Xl.

The proof of (15) now follows from (10).
Finally, we choose f,=wqJ(f, l/n)p+I' Then (12) through (15) yield

II Fn-~11 ~ CWqJ (f,~) ,
Pn p n p+1

which together with (10) proves (9). I

4. SHAPE-PRESERVING ApPROXIMATION

Returning to continuous functions we will show that a monotone
increasing f E C[ -1, 1] is approximable by reciprocals of monotone
decreasing polynomials Pn (so that I/Pn is monotone increasing) at the
same rate (1). To this end we observe that Beatson [1] proved the exist­
ence of a Jackson-type kernel satisfying (2) and such that it takes increas­
ing functions into increasing functions. Using this kernel in the proof of
Theorem 1, we see that whenever f is increasing so is fe and hence f; I is
decreasing. Therefore the polynomials Pn defined by (6) are decreasing. We
summarize these observations in

THEOREM 4. Let f E C[ -1, 1] be nonnegative and increasing. Then for
each n there is a decreasing Pn E f!J>" such that (1) holds.
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